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Fig. 9. With the exception of one smaller ripple and slower

rate of cutoff at 3 GHz–30-d B region, the experimental re-

sult is in very close agreement with the theoretical prediction

shown in Fig. 7.

VII. COUPLED FILTERS

The design equations of Table I can be modified to include

coupled filters such as those shown in Fig. 10. This can be done

readily by the graphical transformation technique [12], and

the results are presented in Tables II and III.

VIII. CONCLUSION

The design formulas presented in Tables I–III have the

following advantages over other existing approximate design

formulas.

1) The new design formulas are simpler.

2) Two fewer sections are required for the parallel-coupled

filters.

3) The identical coupling parameters ( Yo) in the filter

structure may offer some mechanical advantages in the physi-

cal realization of the filter.

4) The worst VSWR of the filter in the passband can be

predicted (4) and precorrected if necessary.

The comparative ease with which these new design equa-

tions were derived also demonstrated the effectiveness of the

new approach presented in the companion paper [7].
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Design of Acoustic Surface-Wave Devices Using

an Admittance Formalism

ALAN S. BURGESS AND PETER H. COLE

Absfracf-The advantages of an admittance formalism for the
derivation of performance characteristics of transversal filters and
one-port information stores using acoustic smface-wave delay lines
are described. An expression for the transadmittance between trans-
ducer pairs in the weak-coupling approximation is derived using a
normal mode theory. The formulation is found to give good agree-
ment with measurements of the passband response of a wide-band
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logarithmically frequency-tapered transducer pair on EY-qusr tz
A brief discussion of the limitations of the model is included.

I. INTRODUCTION

~ HE ART of signal processing by means of accmstic

1 surface-wave devices depends in large measure o n the

exploitation of the characteristics of multitapped delay

lines in the synthesis of two-port transversal filters. Multitap

delay lines in which all the transducers are connected in paral-

lel to form a one-port device also find application in the field

of information storage and encoding in that they are one-port
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passive elements which will return an information-bearing

reply signal in the form of a pulse code in the time domain in

response to interrogation by a short pulse.

The principal parameters of interest to the users of such

devices are the input immittances and voltage transfer ratios

for the two-port structures and the time-domain response for

one-port structures. There are several methods available for

calculating the input immittance for a single transducer, in-

eluding theempirical three-port model of Smith et al. [I], the

integral formulation of Auld and Kino [2] based on a normal

mode analysis, and the variational method described by Mil-

som and Redwood [3]. For the calculation of the voltage

transfer ratio, the three-port model of Smith et at. may be

used although the calculation is rather complex. Tancrell and

Holland [4] and Morgan [5] have shown how the three-port

model can be applied to the determination of the responses of

apodized transducer structures. More recently, the three-port

model has been extended by Smith et al. [6] and Jones et al.

[7] to enable the prediction of second-order effects on strong

coupling substrates, the most important of which are regenera-

tion, and reflection from the acoustic mismatch between the

metallized and unmetallized regions within a transducer.

The structures which were discussed above, namely trans-

versal filters and one-port information stores, possess the

common property of parallel connection of many surface-

wave transducers and, as will be shown, this property renders

an admittance formulation extremely useful in predicting

their characteristics. Both the input immittance and the

voltage transfer ratios may be related in a direct manner to

the properties of an admittance matrix of the structure in

either the time or frequency domain.

Auld and Kino [2] have described a method for the calcu-

lation of the input immittance of a single transducer, at least

in the weak-coupling approximation, which is appropriate to

most materials on which multitap devices are fabricated, by a

normal mode theory. In this paper the normal mode theory is

extended to produce an expression for the transfer admittance

between a pair of transducers, again on weak-coupling sub-

strates. Thus it becomes practical to propose the admittance

formalism as a complete and convenient method for character-

izing surface acoustic-wave devices with any number of elec-

trical ports.

Section II of this paper will deal with the utilization of an

admittance formulation in the determination of quantities of

interest in tapped delay lines and one-port information stores,

while Section III will present a normal mode theory for the

calculation of transfer admittances in the weak-coupling ap-

proximation. Experimental measurements will be presented

in Section IV for comparison with the calculations as applied

to a wide-band delay line structure, and the paper concludes

with a discussion, in Section V, of the limitations of the meth-

ods used.

II. THE ADMITTANCE FORMULATION

The admittance matrix for a two-port delay line is defined

by the equation

(1)

in which ~, and ii are complex phasors representing the peak

values of terminal voltages and currents with the senses shown

in Fig. 1, and J?ij are complex functions of frequency. A

knowledge of the admittance matrix at all frequencies pro-

vides a complete characterization of the delay line.

Fig. 1. Equivalent circuit of a two-port surface-wave delay line con-
nected between a source of impedance Zs and a load impedance ZL.

INPUT PORT IACOUSTIC ABSORBER cWPUT PORT

Fig. 2. Circuit showing the external electrical connections of an N-port
delay line connected as a transversal filter.

The quantity of most common interest to a filter designer

is the voltage transfer ratio to be expected when the line is

connected between a signal generator of source impedance

Z,S and a load of impedance ZL, as shown in the equivalent

circuit of Fig. 1. This ratio is given by

VL – Y21ZL—. . (2)
Vs 1+ Y1lZ,S+ Y22ZL+ZSZL( Yll Yt.z– Y12 Ytl)

When a weak-coupling substrate is employed in a filter which

is to be inserted without impedance matching into a SO-Q

system, the source and load impedances are real, and the

inequalities

ly,, ]&= ly,,l&,<<l

usually hold.

In this case the voltage transfer ratio simplifies to

(4)

which shows that the voltage transfer ratio between the input

and output ports of a delay line is determined simply by the

product of the transadmittance between the input and output

~orts and the load impedance, with an accuracy dependent

only on the validity of the approximations in (3). The prac-

tical significance of this result is that measurement in such

unmatched systems provides an accurate and direct experi-

mental check on the form of the transadmittance function,

which is the most important system design parameter.

The admittance formalism is also of particular con-

venience for use in predicting the behavior of acoustic surface-

wave lines with multiple transducers in the propagation path

connected to a small number of external electrical ports. Con-

sider, for example, the equivalent circuit for the transversal

filter shown in Fig. 2. If we first determine the admittance

matrix Y,j (i, j = 1 . . . N) for the delay line, treating the

device as an N-port, then it is a straightforward matter to

show that the network equations for the resulting two-port

take the form

[H‘[3 21[;:1 (5)
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in which the elements of the new admittance matrix given by

(6)

may be seen to be simple sums of the admittance elements of

the N-port. This property of the admittance formalism is a

consequence of the parallel connection of the delay line taps.

The usefulness of an admittance formalism is not limited

to unmatched source and load conditions. If the approxima-

tions involved in simplifying (2) are not justified, as would

be the case with impedance-matched transducers or with

moderate to strong coupling substrates, then (4) cannot be

used. A common problem which arises in such cases in the

design of signal-processing lines and filters is the prediction

of the triple-transit signal. In the admittance formulation this

can be done quite simply by manipulation of (2). If the input

admittance terms YII and YZZ can be treated as constants

over the frequency range of interest, then (2) can be rewritten

in the form

tiL, – A Y21RL
(7)

m = ~– A.&d?L vu Y21

where A = [(1+ YIIRs) (1 + y22&) ]–l. Provided B=

A R,sRL YN Yzl has magnitude less than unity, (7) can be ex-

panded by the binomial theorem to give

~L = – .4 Y21RLVS[1 – 1? + B2 – B3 . . . ]. (8)

Taking the Fourier transform of both sides to observe the

time-domain response, we obtain

TL(t) = — ~,s(t)*Yzl’(t) +Vs(t) #Yyl’(t) #Ylz’(t)*Y21’(t) — . . . (9)

where

Y21’(~) = AYzl(~)RL

yIz’(~) = Y12(ORS

and * indicates convolution.

Comparison of this expression with (4) shows that the

first term in the expansion corresponds to the primary re-

sponse of the line; yjl’(t) is the primary impulse response of

the delay line when excited at port 1, and similarly for yl,’(t).

The second term of the expansion gives the time-domain

response due to the triple-transit signal, and subsequent

terms give the higher order reflections which are normally of

little interest due to their greater attenuation.

The effects resulting from the variable input impedance of

the transducers can also be predicted from (2), It can be seen

that an increase in the magnitude of Yll and YZ2 at any fre-

quency will result in a reduction of the ratio fi~/~,s. One

consequence of this is that the launching of volume waves in

a line, even if not detected by the receiving transducer, will

still affect PL/V~ through the variation of YH and Yzz.

Another device for which the admittance formalism is of

particular utility is the one-port echo line, shown in Fig.

3(a). Devices of this type have been studied by the authors

for” their use in inforrn~tion encoding and storage, as it is

possible to construct a series of lines of varying patterns in

which each line responds to an input pulse with a unique

train of echo pulses coded in the time domain,

The equivalent circuit for a one-port line, connected to a

source and receiver, is shown in Fig. 3(b). To predict the

Fig, 3.

““m
(01

“5tmfv
(b)

Equivalent circuits for a one-port echo line showing (a)
transducer interconnections and (b) measurement circuit.

response of such a line, which may have many transducers

connected in parallel, it is again necessary to evaluate the

elements of the N-port admittance matrix. The total input

admittance is then given by

i=l j=l

and the voltage transfer ratio is given by

1
. __x

l+~-+Rs Y

(lo)

(11)

If we substitute Y. +jBo for Y, where jBO ‘jWcT is the sus-

ceptance of the static transducer capacitance, the voltage

transfer ratio becomes

tiL z
.

Vs Rs(l + ZY.)
(12)

where Z = RSRL [R~ +RL +RSRLjBo]–l is the impedance of

Rs, RL, and the transducer capacitance all in parallel. Nor-

mally ) Z YG] <1 and we can write

tiL=VSZ(RS)-l[l -Z Ya+(ZYa)2-(ZV.)3+ . . . ]. (13)

If we take the Fourier transform of both sides, we earl ob-

serve the time response of the line

~L(t) = ~s’(t) – !!s’(t)@(t) + Vs’(t)xy’(t) *y’(t) . . . ( 14)

where zJS’(t) = US(t) *z(t) (Rs)–l and y’(t) = z(t)* ya(t). The first

term of the expansion represents the source voltage as seen by

the line, which would be a short pulse in a practical system.

The principal response of interest is given by the second term,

which provides the primary echo response of the system,

y’(t) being regarded as the primary impulse response of the

line. The subsequent terms represent the higher order re-

sponses, i.e., echoes excited by earlier echoes. These are

normally neglected because I y’(t) I is much less than unity,

but can be evaluated in situations where it is thought that

subsequent responses might produce unacceptable inter-

ference with the main replay signal.

In order to apply the admittance formalism discussed in

this section to practical problems, methods for the calculation

of input admittances of single transducers and transfer ad-

mittances between transducers must be available. The cal-

culation of input admittances by normal mode theory [2]
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Fig. 4. Two-transducer structure. (a) Schematic showing coordinate
system and boundary surfaces referred to in text. (b) Scattering
matrix representation for normal modes.

was mentioned earlier. It is the purpose of the next section

todescribe a normal mode theory forthe calculation of trans-

fer admittances between pairs of transducers on a weak-

coupling substrate. The transadmittance is derived for a pair

of transducers separated by a length of free substrate surface,

but the formula can also usefully be applied to transducers on

a multitap delay line in situations where the reflections from

the intermediate transducers, which are short circuited in the

admittance calculation, are much less than the regeneration

effects which these transducers present at their working load

impedances.

III. DERIVATION OF TRANSADMITTANCE

The system for which we derive an expression for the

transadmittance is shown in Fig. 4(a), in which the trans-

admittance Yll between a transducer TI of uniform width W

and an apodized transducer Tz of maximum width <Wis to

be determined. The calculation is facilitated by making the

artificial assumption that the configuration is repeated

periodically along the x axis with some large periodicity in-

terval L; the principal effect of this assumption is the in-

troduction of an artificial discrete set of normal modes. These

modes are obtained by using linear combinations of straight-

crested surface waves to satisfy the periodic boundary con-

ditions at x= t L/2. In this way one obtains modal fields

whose components are trigonometric functions of all the in-

teger multiples of 27rx/L. We will adopt a mode-labeling

scheme such that a mode with positive index m propagates to

the right in Fig. 4, while a mode with negative index – m

propagates in the opposite directional The zero mode index

will be reserved for signals at the electrical ports of one or the

other of the transducers. If one assumes that reference

planes 5’1, ,sZ= .&, and S~ in the figure are sufficiently far from

the transducers for the nonpropagating modes to have de-

cayed to negligible amplitude, we need consider only the

1 In this mode-labeling scheme, modes with equal Z- and oppositely
directed z-propagation constants are associated with different mode
numbers.

propagating modes. At a particular frequency u there will be

a finite number 2N of such modes.

As a further consequence of the periodic boundary condi-

tions, it may be shown that the field vectors of the propagat-

ing acoustic surface-wave normal modes satisfy the orthog-

onality relations [8]

s(–jcIJ&D.*+jw&*D~ – v~. P.* – v.*. ~J. k dS
s

. 0 when m # N

= 4P. when w = n (15)

where r+~(x, y, z), D~(x, y, z), u~(x, y, z), and ~~(x, y, z) are

complex phasors representing peak values of potential, elec-

tric displacement, particle velocity, and stress tensor of nor-

mal mode m, and .S is any one of the surfaces .SI, .SZ= .S8, or .S4

perpendicular to the z axis shown in Fig. 4(a), and extending

from y =0 to y++ co over the interval –L/2 <x <L/2.

The power Pm is the power carried to the right by normal

mode m. In our mode-labeling scheme for which @~= — Q–m,

we have also Pm= – P_m. Selecting a common value P for

which Pm= P for m >0 and Pm= — P for m <0 will normalize

the fields C&, Dn, etc,, to definite values.

Since the nonpropagating modes are assumed to be of

negligible amplitude at the reference plane SZ= S~, we may

express the field at this point in the form

m=—1 m= 1

m=—1 m=1

2’ = $ vm(’)T,. + g vm@Tm
m-— 1 m=]

–N N

v = ~ Vm(z)vm + ~ Vm(z)vm. (16)
?)7,=— 1 m. 1

The coefficients Vm(Z) may be regarded as complex generalized

voltage amplitudes of forward and backward waves which

enter (m <O) or leave (m> O) transducer T1 through a series

of N acoustic surface-wave ports which have a common

reference plane S2. If we adopt the notation VO’+ and VO’-

for the input and output generalized voltage waves at the

electrical port of T1, we may write, on the assumption that

no signals enter TI across the plane S1, the scattering matrix

equation

II=F’’:””(1
in which the assignment of mode numbers has produced sym-

metry of the matrix in the form S,O’ = SO–,’. A requirement for

symmetry of the scattering matrix is that all generalized

voltages are defined in a way that unit amplitude waves carry

a common power P. This requirement has already been satis-

fied at the acoustic ports. To facilitate its adoption at the

electrical ports, the normal transducer structures of TI and

Tz have been supplemented in Fig. 4(a) by the parallel-con-
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netted low-value resistors RI and Rzj which are chosen to

have a resistance much less than the input impedances of

T, and T?, so that TI and Tz can be regarded as matched when

fed from transmission lines for which R, and R, are the re-

spective characteristic impedances. A consequence of these

restrictions is that the actual voltage ~ between the fingers

of transducer T1 will be related to the incident generalized

voltage amplitude by
——

V = VO’+ ~2PRl . (18)

It will be seen later, from (39), that the transadmittance from

T, to T, is independent of the choice of resistors RI and R2.

The set of normal modes which communicate with trans-

ducer T2, assuming that no signals enter T, from across S4,

are those which cross .SJ. If these are assigned mode ampli-

tudes Vm@, (m>O, input modes and m <O, output modes),

and the input and output waves at the electrical port have

the respective amplitudes Vo”+ and Vo”-, the scattering matrix

equation for Tz takes the form

v,,,- ~

p7_1(3)

J7_2(3)

J/7_3(3)

J/’_J3)

——

——

sol)”, sol”, .s02” . . . Scm’” “

SK)”, . . . ~-IN”

SL!I”, . . .

VII”+
VI(3)

V2(3)

V,(3)

J7N(3)

(19)

in which the assignment of mode numbers adopted has pro-

duced symmetry [n the form S–iO” = SO/’. “ -

The connection between transducers TI and Tz arises be-

cause the output modes of T1 become the input modes of T.z

on the common reference plane S.Z= .&, as shown in Fig.

4(b). Thus we obtain the equation Vm(z) = Vm(3) for all nz>O.

Suppose that TI is excited with an incident voltage VO’+ and

that T, is terminated in a matched load R,, The latter con-

dition means that VO”+ = O in (19). It is, furthermore, as-

sumed that the acoustic scattering at Tz is negligible when the

electrical port is short circuited. 2 In this case V–m(2) = V–~@

=0 in (17) and.(19), and it is found that

$-= ~ So,’’s,o’ = g S-,O’’SLO’ (20)
i=1 i=1

in which the symmetry of ~’ has been used, For further

progress, explicit expressions for the scattering matrix ele-

ments, which may be derived from a knowledge of the normal

mode amplitudes launched by known source distributions on

TI or Tz, are required.

The calculation of the amplitude of a normal mode field

launched by a known source distribution on transducer TI

proceeds from consideration of the complex reciprocity in-

tegral

s~(–j@#IS~m*+j@6n*&V,~fro”–Vm”.~,).dS=O (21)

established by Auld [8] for a lossless piezoelectric medium in

which no free charges or body forces are present. In the

above integral @~, D., etc., is the total field launched by a

particular source distribution at frequency co. ~~, D~, etc., is

a This is not a satisfactory approximation for strong-coupling sub-
strates.
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the field of a normal mode at the same frequency ti, and dS is

an element of area directed outward from a closed surface S

which we will choose in the present case to consist of the

propagation surface of the substrate, the boundary surfaces

S1, S2, ST, and SB in Fig. 4, and a plane deep in the material.

On the assumption that on planes S1 and S2 the propagating

normal modes form a complete set for expansion of the

fields @,, D,, etc., launched by the sources, and making use of

the orthogonality relations (15), we may derive the expres-

sion for the amplitude of normal mode m,

Vm(z) = :2 s4P~,[-j@,D~*+jcJD,h*].dS (2?2)

where the integration is over the surface 5“ of transducer

Tl, dS is directed upward, and mode m has m >0. The dis-

placement vectors for the source field and the Rayleigh nor-

mal mode field can be eliminated from this expression to ob-

tain

Vm(z) = x

“ s,
4P ~ [CO&r@s + u.]om* dS (23)

where ff, is the charge density on the underside of a finger, +,

is the electrostatic potential established at the substrate sur-

face by the source distribution, and we have used the fact

that for a Rayleigh wave of propagation constant [~~, of

magnitude @m, the normal component of electric flux dlensity

is related to the potential by

for all propagation directions in the xz plane. At this point

we make the assumption that the variation in propagation

velocity with direction on the substrate can be neglected, and

we replace f?~ by a constant value f?.

Equation (23) can be condensed somewhat by the def-

inition of a source function j’ (x, z) for a transducer pattern

operated at a particular frequency by the relation

Cotij’(x,z) = US(1,o,z) + 60M8(L 0, z). (24)

The amplitude of a normal mode m launched toward reference

plane SZ then becomes

. .
Vm(z) = .?::$

s
f’(x, z’)@m*(.x, Z) dS. (25)

Sr

If we make use of (18) to eliminate ~, the result is the equa-

tion for the scattering matrix element
——

jcoco~2PRl
S,( = —— s

— j_’(X,2)+,*(X,Z)dS. (26)
4P s,

A similar equation may be deduced for S_, O”, viz.
——

jcwo~2PRt
S’ioff . ———

4P s

j“(%, Z)+_,* (X, Z) dS. (27)
Sff

The voltage ratio (20) may now be written

vo/r_ — a~eo2~RlRz ‘v

Vol+ =
– PI SS,A*(X, Z)j’(X, Z) dS

8P

s ~_,*(X, Z)~’’(*, z)dS. (28)
s!!

We now interchange the order of summing and forming the
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second projection, and make use of the result @*(z,z)

=@i(x,z), which follows if we adopt (without loss of gen-

erality) the convention d@,0)=4i*(0,0) for all normal

modes. The voltage transfer equation (28) then becomes

~;f- —iJ2C024RIRZ—.
Vo’+ 8P

In view of the normal mode expansion (16) and the ex-

pressions for normal mode amplitudes (25), the coefficient

of fl’(x, z) in the integral can be recognized (apart from a

constant factor) as the total field, which we will call 4(x, z),

radiated by transducer Tl towards the region of transducer

TZ. Thus we obtain
—.

Vo”- jue,d2PRz
—

s
I$(x, z)j’’(x, z) ds. (30)

Vo’+ – @ s’‘

This expression allows for the effects of diffraction in the

field launched by transducer T1. We will now assume, how-

ever, that at all frequencies of interest, the width W of trans-

ducer T, is >>X, so that its radiated field O(X, z) in the vicinity

of transducer Tz is essentially the uniform plane wave

@(x, z) = r#I(O,O)e–~dz, ~2~<x<; (31)

where ~ is the propagation vector at frequency co in the z di-

rection on the unperturbed substrate. The coefficient o(O, O)

can be related to the driving amplitude VO’+ by invoking

conservation of power between the field +(x, z) and the set of

normal modes ~t(~, z) into which it can be decomposed.

The power carried in width W by a uniform plane wave

is given in terms of the surface-wave potential @ and the

commonly accepted measure A of piezoelectric coupling for

surface waves by Ingebrigtsen’s [9] perturbation formula as

P = – IuIW(CO +ep)l #@,@12/(4A) (32)

where c? is the effective permittivity of the substrate and A iS

the fractional change in surface-wave velocity between a free

and a metallized propagating surface. The power P is also

given in terms of the normal mode amplitudes by the equa-

tion P=~v;@)vi@)* (33)
L=I

which, after substitution for Vi(z) from (25) and interchange

of order of summation and integration, becomes

P=3beoVo’+~2PR1

4 s
f’(x, Z) ~ V,t2)*C#U*(X, Z) dS

s? i= 1

jueoVo’+J2PRl
. sO*(o,0)f’(x,z)e~~’ dS. (34)

4 s’

Equating the two values of P obtained gives
—.

–jwAeoVo’+42PR1 sWt0)=lo]Jv(,,+%)s’f’(x,z)e~~zU. (35)

We may now substitute for +(x, z) = @(O, O)e–@z in (30) for

the output of transducer Tz and obtain

V/’- Ico lAC02V’~~ ,F1l[F,I
(36)

Jro{+ = 2w(q + ep)

where we have introduced FL and F2 defined by

s
F, = j’(x, z)e@’ M

SP

FS = sj“(z,z)e-@Z dS. (37)
S*t

To calculate the transadmittance we must relate the voltage

V on transducer T1 to Vo’+ by (18), and the short-circuit cur-

rent ~ in transducer T, to J’o”– by the relation

~ = – 2Vo’-d2P/R2 . (38)

The short-circuit forward transadmittance Y,l(co) = ~/~ then

becomes, from (36)

- lcolAe02
Y,,(u) =

s
-f’(x, z)e~d’ dS

I’v(eo + %) St

sj“(x, z)e-~fig dS. (39)
s!’

Since the forward transadmittance between the trans-

ducers will not depend on the values of the parallel-connected

resistances RI and Rz, we may assume that the expression (39)

applies also to the transducers in the normal situation in

which they are absent.

For numerical evaluation of transadmittance functions by

means of (39), an expression for the source function ~(x, z) is

required. In the weak-coupling approximation we assume

that j(x, z) may be obtained from the potential distribution

@, and charge density u, on the underside of a finger, which

arises in the solution for the electrostatic field when the given

finger pattern is placed on an equivalent nonpiezoelectric

substrate.

We make the further independent-gap approximation that

the solution for the field in each gap (a gap is defined as the

region between the electrical center of one finger at z = z~, and

the next at z = zWl, as shown in Fig. 5) is the same as we would

obtain if that gap were part of an infinite length uniform

width and spacing interdigital transducer. Taking the field

of a uniform transducer obtained by Engan [10], we obtain

the expression for .f(x, Z) in the region Z~<Z <zk+l,

f(x, z) = T
1.854 (z~+l – zk)

“ so (- 1)”[(%/60) + (B/&J]Pn(o) Cos(AZ’) (40)

where zk+l ‘zk is the size of the gap in question, /%= (2n+ l)T/

(Z,+I –z,), z’ =Z ‘zk, and ~n(0) is the Legendre function of the

first kind of zero argument. This source function, on a ma-

terial of moderate dielectric constant such as quartz, has at

frequencies reasonably close to band center the approximate

form also shown in Fig. 5. In numerical calculations of the

behavior of transducers over anything other than extreme

bandwidth ratios, only a limited number of terms of the

series for each gap need be taken. In the calculations pre-

sented later, only the first term, (n= O), is retained, as the
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Fig. 5. Source function ~(z) for a uniform interdigital transducer on
Si02, plotted between the centers of two adjacent electrodes spaced
by a distance G= z~+l – zk. The regions zk<z< z~+G/4 and 2k+l – G/4
<z <z~+l are metallized.

Fig. 6. Electrode pattern for one of the two frequency-chirped
transducers used in the experimental wide-band delay line.

next nonzero term, (n= 2), has & = 5(30 and is considered as

unlikely to produce significant coupling to waves of propaga-

tion vector ~. On the further assumption that coupling to the

Rayieigh wave comes largely from those areas of a transducer

which have & ~~, and noting that the second term in square

brackets in (40) represents, even on moderate dielectric con-

stant substrates, only a small correction to the major coupling

term, we replace (@/(3n) by unity in that equation and obtain

the approximate expression

f(x, z) =
1.854(2:, - j g [~:]~n(o) cos@nz’(41)

which has been used as the basis of the calculations.

IV. PRACTICAL APPLICATION

To test the validity of the transadmittance integral for-

mulation, the theory was used to predict the insertion loss

and frequency response of a wide-band surface-wave filter,

and the results were compared with an experimental measure-

ment of the same parameters. The line used had identical

frequency-chirped transducers at the input ~nd output ports,

one of which is shown in Fig. 6, and was fabricated using

-x

-8[

-9(

1*
-10(

-1?1

—THEORETICAL

— EXPERIMENTAL

,~~..
30 40 w

FREQUENCY (MHz)

Fig. 7. Voltage transfer ratio for a wide-band surface-wave delay line
utilizing an identical pair of unapod~zed logarithmically fretquency-
chirped transducers,

aluminum electrodes on YX-quartz. The 41 electrodes were

unanodized and spaced so that the ratio of successive gap

widths was held constant at 0.9722. This resulted in a ratio

of the first gap width to the last gap width of 3.0; the syn-

chronous frequencies for the first and last gaps were 15 and

45 MHz, respectively. The gap widths were arranged to be

equal to half the sum of the two adjacent electrode widths

at all points along the transducer. The electrode lengths were

fixed at 4.7 mm, corresponding to SOL at 33.5 MHz.

Both transducers were frequency-chirped in the same

direction to give constant delay with frequency.

Theoretical Response

The predicted voltage transfer function was determined

using a digital computer by first calculating Yzl(co) as a, func-

tion of frequency using (39) and then substituting in (4). In

the computation, use was made of the fact that when the

transducers are not apodized, the area integrals in (39) reduce

to one-dimensional integrals which form, in fact, the familiar

Fourier transform. These integrals were then evaluated

separately using a 1024-point complex FFT algorithm.

Before this could be done, it was necessary to obtain a

spatial representation of the source function j(x, z). No at-

tempt was made to model the harmonic response of the

transducer on this occasion, and it was assumed that this

would not seriously affect the passband response of the line.

The next step involved the assumption that the source func-

tion in each gap is not greatly affected by the geometry of the

adjacent gaps, and hence the source function in each gap

would be identical to that expected in a uniform infinitely

long transducer with the same gap width. In this way, a

source function was assembled by assuming in each gap the

waveform responsible for exciting the fundamental com-

ponent corresponding to that gap (the word “gap” here refers

to the region between the electrical centers of adjacent elec-

trodes).

The calculated magnitude of the voltage transfer ratio

I YZIZL 1, based on the above calculations for Y,l(w) and mea-

sured values of ZL(CO), is shown as the solid curve of Fig. 7.

Experimental Results

The delay line was mounted in a metal box with careful

screening between the input and output wiring to minimize
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Fig. 8. Schematic of thedelay line measurement circui

direct capacitive coupling of input signals to the output. The

measurement system is shown in Fig. 8. All cables were 50-Q

characteristic impedance and were terminated in 50Q at the

oscilloscope. The input impedance to the delay line was con-

firmed to be much higher than 50 Q, and no attempt was made

to tune or match the transducers.

Initially, short bursts of RF signal were used to excite the

line to facilitate the identification of undesired propagating

modes reaching the output transducer. As expected with

such wide-band transducers, significant volume mode energy

was reaching the receiving transducer at the higher frequen-

cies. These modes were removed by cutting a number of slots

into, andadding black waxto, the underside of the crystal.

The measurements were then performed using very long

pulses, and the modulus of the voltage transfer ratio so ob-

tained is shown as the experimental points in Fig. 7: It can

be seen that the magnitudes of the theoretical and experi-

mental voltage transfer ratios, neither of which contains ad-

justable constants, are in good agreement. The greater in-

sertion loss in the experimental result can be attributed to

resistive losses, diffraction, and the effects of slight pattern

and crystal misalignment, which were not included in the

calculations. A notable feature of the passband response is an

approximate 6-d B rise between 17 and 37 MHz superimposed

on the passband ripples. These features may be understood

by observing that in the stationary phase approximation [11],

integrals FL and Fz (37), if carried out over transducers having

a logarithmic gap taper and infinite length, are independent

of frequency. The factor [a I in the forward transadmittance

expression then predicts a frequency response rising at 6 dB

per octave. The passband ripples evident in Fig. 7 arise from

the use of transducers of finite length, and in a practical

device would be minimized by suitably tapering the electrode

overlaps at each end of the transducer.

V. CONCLUSIONS

The admittance formulation has been shown to form a

convenient basis for the calculation of many of the quantities

of interest in tapped delay lines and one-port information

stores. Existing formulations for the derivation of the input

admittances of an N-port structure have been supplemented

by a theory which provides explicit calculation procedures for

the determination of the transadmittance between tWQ trans-

ducers on a weak-coupling substrate.

Calculations of the transadmittance for a wide-band filter

using approximate expressions for the potential and charge

distributions show good agreement with experiment. There

is some discrepancy between measured and theoretical results

at higher frequencies, which is thought to arise from the use of

the independent-gap approximation for the field and charge

distributions, and may possibly also be related to the weak-

coupling approximation.
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