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Fig. 9. With the exception of one smaller ripple and slower
rate of cutoff at 3 GHz-30-dB region, the experimental re-
sult is in very close agreement with the theoretical prediction
shown in Fig. 7.

VII. CoupLED FILTERS

The design equations of Table I can be modified to include
coupled filters such as those shown in Fig. 10. This can be done
readily by the graphical transformation technique [12], and
the results are presented in Tables IT and III.

VIII. CoNcLUSION

The design formulas presented in Tables I-III have the
following advantages over other existing approximate design
formulas.

1) The new design formulas are simpler.

2) Two fewer sections are required for the parallel-coupled
filters.

3) The identical coupling parameters (Yp) in the filter
structure may offer some mechanical advantages in the physi-
cal realization of the filter.

4) The worst VSWR of the filter in the passband can be
predicted (4) and precorrected if necessary.

The comparative ease with which these new design equa-
tions were derived also demonstrated the effectiveness of the
new approach presented in the companion paper [7].
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Design of Acoustic Surface-Wave Devices Using

an Admittance Formalism
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Abstract—The advantages of an admittance formalism for the
derivation of performance characteristics of transversal filters and
one-port information stores using acoustic surface-wave delay lines
are described. An expression for the transadmittance between trans-
ducer pairs in the weak-coupling approximation is derived using a
normal mode theory. The formulation is found to give good agree-
ment with measurements of the passband response of a wide-band
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logarithmically frequency-tapered transducer pair on YX-quartz
A brief discussion of the limitations of the model is included.

I. INTRODUCTION
THE ART of signal processing by means of acoustic

surface-wave devices depends in large measure on the
exploitation of the characteristics of multitapped delay
lines in the synthesis of two-port transversal filters. Multitap
delay lines in which all the transducers are connected in paral-
lel to form a one-port device also find application in the field
of information storage and encoding in that they are one-port
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passive elements which will return an information-bearing
reply signal in the form of a pulse code in the time domain in
response to interrogation by a short pulse.

The principal parameters of interest to the users of such
devices are the input immittances and voltage transfer ratios
for the two-port structures and the time-domain response for
one-port structures, There are several methods available for
calculating the input immittance for a single transducer, in-
cluding the empirical three-port model of Smith et al. [1], the
integral formulation of Auld and Kino [2] based on a normal
mode analysis, and the variational method described by Mil-
som and Redwood [3]. For the calculation of the voltage
transfer ratio, the three-port model of Smith ef al. may be
used although the calculation is rather complex. Tancrell and
Holland [4] and Morgan [5] have shown how the three-port
model can be applied to the determination of the responses of
apodized transducer structures. More recently, the three-port
model has been extended by Smith ef al. [6] and Jones et al.
[7] to enable the prediction of second-order effects on strong
coupling substrates, the most important of which are regenera-
tion, and reflection from the acoustic mismatch between the
metallized and unmetallized regions within a transducer.

The structures which were discussed above, namely trans-
versal filters and one-port information stores, possess the
common property of parallel connection of many surface-
wave transducers and, as will be shown, this property renders
an admittance formulation extremely useful in predicting
their characteristics. Both the input immittance and the
voltage transfer ratios may be related in a direct manner to
the properties of an admittance matrix of the structure in
either the time or frequency domain.

Auld and Kino [2] have described a method for the calcu-
lation of the input immittance of a single transducer, at least
in the weak-coupling approximation, which is appropriate to
most materials on which multitap devices are fabricated, by a
normal mode theory. In this paper the normal mode theory is
extended to produce an expression for the transfer admittance
between a pair of transducers, again on weak-coupling sub-
strates. Thus it becomes practical to propose the admittance
formalism as a complete and convenient method for character-
izing surface acoustic-wave devices with any number of elec-
trical ports.

Section I1I of this paper will deal with the utilization of an
admittance formulation in the determination of quantities of
interest in tapped delay lines and one-port information stores,
while Section III will present a normal mode theory for the
calculation of transfer admittances in the weak-coupling ap-
proximation. Experimental measurements will be presented
in Section IV for comparison with the calculations as applied
to a wide-band delay line structure, and the paper concludes
with a discussion, in Section V, of the limitations of the meth-
ods used.

II. THE ADMITTANCE FORMULATION

The admittance matrix for a two-port delay line is defined

by the equation
Iy Yiu Vool [Va
.| = , (1)
I, Vor VallV,

in which V, and I; are complex phasors representing the peak
values of terminal voltages and currents with the senses shown
in Fig. 1, and Y;; are complex functions of frequency. A
knowledge of the admittance matrix at all frequencies pro-
vides a complete characterization of the delay line.
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Fig. 1. Equivalent circuit of a two-port surface-wave delay line con-
nected between a source of impedance Zgand a load impedance Zz.
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Fig. 2. Circuit showing the external electrical connections of an N-port

delay line connected as a transversal filter.

The quantity of most common interest to a filter designer
is the voltage transfer ratio to be expected when the line is
connected between a signal generator of source impedance
Zg and a load of impedance Z;, as shown in the equivalent
circuit of Fig. 1. This ratio is given by

_V_L_ —VYauZy

r_ )
VS 1+ YIIZS+ Y22ZL+ZSZL(Y11 Y22_ Yl? Y‘ll)

When a weak-coupling substrate is employed in a filter which
is to be inserted without impedance matching into a 50-Q
system, the source and load impedances are real, and the
inequalities

| V| Rs =~ | Yoo| R 1
‘Ygl‘RSZ IY12‘.RL<<1 (3)

usually hold.
In this case the voltage transfer ratio simplifies to

Ve

V= — Yzl(w)RL (4)

Vs
which shows that the voltage transfer ratio between the input
and output ports of a delay line is determined simply by the
product of the transadmittance between the input and output
ports and the load impedance, with an accuracy dependent
only on the validity of the approximations in (3). The prac-
tical significance of this result is that measurement in such
unmatched systems provides an accurate and direct experi-
mental check on the form of the transadmittance function,
which is the most important system design parameter.

The admittance formalism is also of particular con-
venience for use in predicting the behavior of acoustic surface-
wave lines with multiple transducers in the propagation path
connected to a small number of external electrical ports. Con-
sider, for example, the equivalent circuit for the transversal
filter shown in Fig. 2. If we first determine the admittance
matrix V,, (¢, j=1-- - N) for the delay line, treating the
device as an N-port, then it is a straightforward matter to
show that the network equations for the resulting two-port
take the form

I:I in :] I: Vi
joub Ym'

YI‘ZI] [Vin ] (5)
Y‘Z:ZI I}vout;
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in which the elements of the new admittance matrix given by

N
Y =2, Yy
=2

N N N
yu' = Z Yz‘l Y22' = Z Z Yij (6)
=2

=2 y==2

may be seen to be simple sums of the admittance elements of
the N-port. This property of the admittance formalism is a
consequence of the parallel connection of the delay line taps.

The usefulness of an admittance formalism is not limited
to unmatched source and load conditions. If the approxima-
tions involved in simplifying (2) are not justified, as would
be the case with impedance-matched transducers or with
moderate to strong coupling substrates, then (4) cannot be
used. A common problem which arises in such cases in the
design of signal-processing lines and filters is the prediction
of the triple-transit signal. In the admittance formulation this
can be done quite simply by manipulation of (2). If the input
admittance terms ¥y and Vs can be treated as constants
over the frequency range of interest, then (2) can be rewritten
in the form

Ve — AV Ry o
Vs 1— ARsR. V1.V
where  A=[(14VyRs)(1+ VR,  Providled B=
ARgRr Y13 Yy has magnitude less than unity, (7) can be ex-
panded by the binomial theorem to give

Vo= — AVuR,Vs[1— B+ B2 —B..-]. (8

Taking the Fourier transform of both sides to observe the
time-domain response, we obtain

v () = — gD %yar’ () Fos@%yar’ O xy1s" Oy’ () — - - - (9)
where

y21l(t) = AyZI(t)RL

y15' () = y12() Rs

and * indicates convolution.

Comparison of this expression with (4) shows that the
first term in the expansion corresponds to the primary re-
sponse of the line; y5'(f) is the primary impulse response of
the delay line when excited at port 1, and similarly for y’(2).
The second term of the expansion gives the time-domain
response due to the triple-transit signal, and subsequent
terms give the higher order reflections which are normally of
little interest due to their greater attenuation.

The effects resulting from the variable input impedance of
the transducers can also be predicted from (2). It can be seen
that an increase in the magnitude of Y1, and Yy at any fre-
quency will result in a reduction of the ratio V5/Vs. One
consequence of this is that the launching of volume waves in
a line, even if not detected by the receiving transducer, will
still affect V/Vg through the variation of ¥y, and V.

Another device for which the admittance formalism is of
particular utility is the one-port echo line, shown in Fig.
3(a). Devices of this type have been studied by the authors
for their use in information encoding and storage, as it is
possible to construct a series of lines of varying patterns in
which each line responds to an input pulse with a unique
train of echo pulses coded in the time domain.

The equivalent circuit for a one-port line, connected to a
source and receiver, is shown in Fig. 3(b). To predict the
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Fig. 3. Equivalent circuits for a one-port echo line showing (a)
transducer interconnections and (b) measurement circuit.

response of such a line, which may have many transducers
connected in parallel, it is again necessary to evaluate the
elements of the N-port admittance matrix. The total input
admittance is then given by

N N
Y =22 Yy (10)
i=1 j=1
and the voltage transfer ratio is given by
v 1
REI. : (11)
Vs Ry
14+ — + RsY
R,

If we substitute Y,+7Bo for Y, where jBo=jwCr is the sus-
ceptance of the static transducer capacitance, the voltage
transfer ratio becomes

Ve zZ

a2 (12)

VS RS(]- + Zya)

where Z=RSRL[RS+RL+RSRL]'BO]_1 is the impedance of
Rg, Rz, and the transducer capacitance all in parallel. Nor-
mally |ZV,] <1 and we can write

Vi=VsZ(Re) 1= 2V A+ (ZYV)2—(ZVo)*+ - - - |.

If we take the Fourier transform of both sides, we can ob-
serve the time response of the line

v () = vs'(5) — vs' (D*y' () + o5’ D%y 2y’ (1) - - - (14)

where vg'(t) =vg(t)*3(t)(Rg)™* and ¥'(¢) =2z()*y,(#). The first
term of the expansion represents the source voltage as seen by
the line, which would be a short pulse in a practical system.
The principal response of interest is given by the second term,
which provides the primary echo response of the system,
y’'(t) being regarded as the primary impulse response of the
line. The subsequent terms represent the higher order re-
sponses, i.e., echoes excited by earlier echoes. These are
normally neglected because |y'(f)| is much less than unity,
but can be evaluated in situations where it is thought that
subsequent responses might produce unacceptable inter-
ference with the main replay signal.

In order to apply the admittance formalism discussed in
this section to practical problems, methods for the calculation
of input admittances of single transducers and transfer ad-
mittances between transducers must be available. The cal-
culation of input admittances by normal mode theory [2]

(13)
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Fig. 4. Two-transducer structure.
system and boundary surfaces referred to in text.
matrix representation for normal modes.

was mentioned earlier. It is the purpose of the next section
to describe a normal mode theory for the calculation of trans-
fer admittances between pairs of transducers on a weak-
coupling substrate. The transadmittance is derived for a pair
of transducers separated by a length of free substrate surface,
but the formula can also usefully be applied to transducers on
a multitap delay line in situations where the reflections from
the intermediate transducers, which are short circuited in the
admittance calculation, are much less than the regeneration
effects which these transducers present at their working load
impedances.

III. DERIVATION OF TRANSADMITTANCE

The system for which we derive an expression for the
transadmittance is shown in Fig. 4(a), in which the trans-
admittance Yy between a transducer Ty of uniform width W
and an apodized transducer T of maximum width <W is to
be determined. The calculation is facilitated by making the
artificial assumption that the configuration is repeated
periodically along the x axis with some large periodicity in-
terval L; the principal effect of this assumption is the in-
troduction of an artificial discrete set of normal modes. These
modes are obtained by using linear combinations of straight-
crested surface waves to satisfy the periodic boundary con-
ditions at x= +L/2. In this way one obtains modal fields
whose components are trigonometric functions of all the in-
teger multiples of 2wx/L. We will adopt a mode-labeling
scheme such that a mode with positive index m propagates to
the right in Fig. 4, while a mode with negative index —m
propagates in the opposite direction.! The zero mode index
will be reserved for signals at the electrical ports of one or the
other of the transducers. If one assumes that reference
planes S, S2=.S;, and Sy in the figure are sufficiently far from
the transducers for the nonpropagating modes to have de-
cayed to negligible amplitude, we need consider only the

! In this mode-labeling scheme, modes with equal 2- and oppositely
directed x-propagation constants are associated with different mode
numbers.
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propagating modes. At a particular frequency w there will be
a finite number 2N of such modes.

As a further consequence of the periodic boundary condi-
tions, it may be shown that the field vectors of the propagat-
ing acoustic surface-wave normal modes satisfy the orthog-
onality relations [8]

f (—_]W(ﬁmDn* +]w¢n*Dm = Un* Tn* - vn*'Tm) 'k dS
8

=0
= 4P,

when m % n

whenm = n (15)

where ¢n(x, ¥, 2), Dulx, ¥, 3), vn(x, v, 2), and Fn(x, v, 2) are
complex phasors representing peak values of potential, elec-
tric displacement, particle velocity, and stress tensor of nor-
mal mode m, and S is any one of the surfaces .S), Se=.S;, or Sy
perpendicular to the z axis shown in Fig. 4(a), and extending
from y=0 to y—+4 o over the interval —L/2<x<L/2.
The power P, is the power carried to the right by normal
mode m. In our mode-labeling scheme for which = —3_n,
we have also P, = ~—P_,. Selecting a common value P for
which P, =P for >0 and P, = — P for m <0 will normalize
the fields ¢, D, etc., to definite values.

Since the nonpropagating modes are assumed to be of
negligible amplitude at the reference plane S;=3S;, we may
express the field at this point in the form

-N N

b= 2 Vo, + 2 VP,
m=—1 m=1
—N N

D= 3 V.®Dn+ 3 V.®D,
me=—1 m=1

T= 3 V.l + 2 Vu®Ts

m=—1 m=1
—N N

v= 2 V.®vu,+ X V, D0, (16)
me=—1 m=1

The coefficients V,,® may be regarded as complex generalized
voltage amplitudes of forward and backward waves which
enter (m<0) or leave (m>0) transducer T: through a series
of N acoustic surface-wave ports which have a common
reference plane S,;. If we adopt the notation V't and Vi~
for the input and output generalized voltage waves at the
electrical port of 71, we may write, on the assumption that
no signals enter T across the plane .S;, the scattering matrix
equation

Vo] -SOO’,SO—ll,SU—Z’, s S| [V

Vi@ S1o’, 511, SN V™

V,® | = Vo.® | (17)
-VN.(Z)J Ny SN—N,J _V—-A‘r(z)

in which the assignment of mode numbers has produced sym-
metry of the matrix in the form S,y’=.So_,’. A requirement for
symmetry of the scattering matrix is that all generalized
voltages are defined in a way that unit amplitude waves carry
a common power P. This requirement has already been satis-
fied at the acoustic ports. To facilitate its adoption at the
electrical ports, the normal transducer structures of 7 and
T» have been supplemented in Fig. 4(a) by the parallel-con-
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nected low-value resistors R; and R, which are chosen to
have a resistance much less than the input impedances of
T, and T, so that Ty and T can be regarded as matched when
fed from transmission lines for which R; and R, are the re-
spective characteristic impedances. A consequence of these
restrictions is that the actual voltage V between the fingers
of transducer T will be related to the incident generalized
voltage amplitude by

V = V*+ Vv 2PR;. (18)

It will be seen later, from (39), that the transadmittance from
T, to T is independent of the choice of resistors R; and R,.

The set of normal modes which communicate with trans-
ducer T3, assuming that no signals enter T, from across Sy,
are those which cross S;. If these are assigned mode ampli-
tudes V,®, (m>0, input modes and m <0, output modes),
and the input and output waves at the electrical port have
the respective amplitudes Vo't and V,''~, the scattering matrix
equation for T, takes the form

rVUH_ - -SOON, SOIH,SOZN . SONN Vol/+'
Voi® | =|S_w", Sax" [ Vi®
V_o® | =18_5", V,®

(19)
V_y® Va®
_V~N(3)_ _S—NOH, S—NN”J _VN<3)J

in which the assignment of mode numbers adopted has pro-
duced symmetry in the form S_;"" = S¢;".

The connection between transducers 7 and T arises be-
cause the output modes of Ty become the input modes of T3
on the common reference plane S,=3S; as shown in Fig.
4(b). Thus we obtain the equation V,® = V,® for all m>0.
Suppose that T3 is excited with an incident voltage Vo't and
that T is terminated in a matched load R. The latter con-
dition means that Vy""*=0 in (19). It is, furthermore, as-
sumed that the acoustic scattering at T’ is negligible when the
electrical port is short circuited.? In this case V_,® =V_,®
=0in (17) and_(19), and it is found that

V 1 N
= }:So, W = 2SSy (20)
- i=1

in which the symmetry of 8" has been used. For further
progress, explicit expressions for the scattering matrix ele-
ments, which may be derived from a knowledge of the normal
mode amplitudes launched by known source distributions on
Ty or T, are required.

The calculation of the amplitude of a normal mode field
launched by a known source distribution on transducer T}
proceeds from consideration of the complex reciprocity in-
tegral

f (—jwds Dp*+jwpn*Dy— v, Tr*—v,*-T,) -dS=0  (21)
8

established by Auld [8] for a lossless piezoelectric medium in
which no free charges or body forces are present. In the
above integral ¢, D, etc., is the total field launched by a
particular source distribution at frequency w. ¢n, Dn, etc., is

2 This is not a satisfactory approximation for strong-coupling sub-
strates.
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the field of a normal mode at the same frequency w, and 48 is
an element of area directed outward from a closed surface S
which we will choose in the present case to consist of the
propagation surface of the substrate, the boundary surfaces
S1, Sy, Sz, and Sp in Fig. 4, and a plane deep in the material.
On the assumption that on planes Sy and .S the propagating
normal modes form a complete set for expansion of the
fields ¢, D;, etc., launched by the sources, and making use of
the orthogonality relations (15), we may derive the expres-
sion for the amplitude of normal mode m,

V@ = ——

4P (22)

[—jwd)st* + ]wDo¢m*] . dS
Si

where the integration is over the surface S’ of transducer
T4, dS is directed upward, and mode m has m>0. The dis-
placement vectors for the source field and the Rayleigh nor-
mal mode field can be eliminated from this expression to ob-
tain '

V,® = ol

23
4P J g 23)

[506m¢s + as]¢m* aS

where o, is the charge density on the underside of a finger, ¢,
is the electrostatic potential established at the substrate sur-
face by the source distribution, and we have used the fact
that for a Rayleigh wave of propagation constant (., of
magnitude B,,, the normal component of electric flux density
is related to the potential by

D, dS = & Bndn dS

for all propagation directions in the xz plane. At this point
we make the assumption that the variation in propagation
velocity with direction on the substrate can be neglected, and
we replace 8, by a constant value 8.

Equation (23) can be condensed somewhat by the def-
inition of a source function f'(x, 2) for a transducer pattern
operated at a particular frequency by the relation

EOVf/(x; ) = a5(x, 0, 2) + eofs(4, 0, 2).

The amplitude of a normal mode m launched toward reference
plane .S; then becomes

(24)

o e
" 4

I/, 2)bu*(x, 5) dS. (25)

If we make use of (18) to eliminate V, the result is the equa-
tion for the scattering matrix element

w \/ZPR
o =B e ds. 2o
A similar equation may be deduced for S_,o", viz.
Iz 2PR,
S_i! —] ery/2P] i [ (x, 2)¢_*(x, 2) dS. 27)
4P g
The voltage ratio (20) may now be written
Vo”_ —w 602\/R1R2
o= ¢l*(x 2)f (x, 2) dS
Vo+ 8P Z W@ 2)
¢—i*(xa z)f”(x, Z)(ZS (28)

8t

We now interchange the order of summing and forming the
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second projection, and make use of the result b_:*(x,2)
=¢i(x,5), which follows if we adopt (without loss of gen-
erality) the convention ¢:(0,0)=¢:*(0,0) for all normal
modes. The voltage transfer equation (28) then becomes

Vo'~ _ —wle?y/ RiR;
Vot 8P
N
: f |: 2| o, 0)f (x,2) dS] &i(x, 2)f" (x,2) dS. (29)
vl sV g

In view of the normal mode expansion (16) and the ex-
pressions for normal mode amplitudes (25), the coefficient
of f"(x, z) in the integral can be recognized (apart from a
constant factor) as the total field, which we will call d(x, 2),
radiated by transducer T; towards the region of transducer
T.. Thus we obtain

Vo'~ jwerr/2PRy
Vo+ 4P e

o(x, 2)f"(x,2) dS. (30)

This expression allows for the effects of diffraction in the
field launched by transducer Ti. We will now assume, how-
ever, that at all frequencies of interest, the width W of trans-
ducer T is>>\, so that its radiated field ¢(x, ) in the vicinity
of transducer T is essentially the uniform plane wave

¢(x, 2) = ¢(0, 0)e~ %, (31)

—W w
—_— <<
2 2
where 8 is the propagation vector at frequency w in the z di-
rection on the unperturbed substrate. The coefficient ¢(0, 0)
can be related to the driving amplitude V't by invoking
conservation of power between the field ¢(x, z) and the set of
normal modes ¢:(x, z) into which it can be decomposed.

The power carried in width W by a uniform plane wave
is given in terms of the surface-wave potential ¢ and the
commonly accepted measure A of piezoelectric coupling for
surface waves by Ingebrigtsen’s [9] perturbation formula as

P=— |o|W(o+e) 0,0 [2/(48)  (32)

where ¢, is the effective permittivity of the substrate and A is
the fractional change in surface-wave velocity between a free
and a metallized propagating surface. The power P is also
given in terms of the normal mode amplitudes by the equa-
tion
N
P = V,@pm*

=1

(33)

which, after substitution for V;? from (25) and interchange
of order of summation and integration, becomes

jweoVo' t/2PRy N
P = E‘L"_\_/._l F(x,2) 3 Vi @*¢*(x, 2) dS
Sl

4 i=1
= M ¢*(0’ 0) f’(x, Z)ejﬂz das. (34)
Py
Equating the two values of P obtained gives
(0, 0) = —jeheVotV2PRs F(x, 5)e?* dS.  (35)

‘w] W (eo + €p) s

We may now substitute for ¢(x, 2) = (0, 0)e~#* in (30) for
the output of transducer T and obtain
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Vo'~ w | Aeg’/ R1R
O el VRR (36)
Vo't 2W(eo + €p)
where we have introduced F; and F; defined by
Fi= | f'(x 2)eP*dS
Sl
F, = f'(x, 2)e"#= dS. 37

8t

To calculate the transadmittance we must relate the voltage
V on transducer T} to Vo't by (18), and the short-circuit cur-
rent I in transducer T to Vo'*~ by the relation

I = —2Vy'~+/2P/R:. (38)

The short-circuit forward transadmittance Yy (w) =] / V then
becomes, from (36)

— lwlAeo2

v -
21(‘-") W(eo T ep) o

f/(x, 8)e®= dS

7(w, 5)e dS.

S

(39

Since the forward transadmittance between the trans-
ducers will not depend on the values of the parallel-connected
resistances R; and Rs, we may assume that the expression (39)
applies also to the transducers in the normal situation in
which they are absent.

For numerical evaluation of transadmittance functions by
means of (39), an expression for the source function f(x, 2) is
required. In the weak-coupling approximation we assume
that f(x, 2) may be obtained from the potential distribution
¢, and charge density o, on the underside of a finger, which
arises in the solution for the electrostatic field when the given
finger pattern is placed on an equivalent nonpiezoelectric
substrate.

We make the further independent-gap approximation that
the solution for the field in each gap (a gap is defined as the
region between the electrical center of one finger at =2, and
the next at 5=2,1, as shown in Fig. 5) is the same as we would
obtain if that gap were part of an infinite length uniform
width and spacing interdigital transducer. Taking the field
of a uniform transducer obtained by Engan [10], we obtain
the expression for f(x, 2) in the region g <z <gzpy1,

f(x, 2) - 1854(Zk+1 —_ Zk)

L3 (= 1) [(en/eo) + (8/8:)1Pa(0) cos (8a)  (40)

n=0

where 2,1 —2;, is the size of the gap in question, 8, = 2n+=w/
(k41 —2k), 8’ =2—2, and P,(0) is the Legendre function of the
first kind of zero argument. This source function, on a ma-
terial of moderate dielectric constant such as quartz, has at
frequencies reasonably close to band center the approximate
form also shown in Fig. 5. In numerical calculations of the
behavior of transducers over anything other than extreme
bandwidth ratios, only a limited number of terms of the
series for each gap need be taken. In the calculations pre-
sented later, only the first term, (n=0), is retained, as the
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Fig. 5. Source function f(z) for a uniform interdigital transducer on
Si0;., plotted between the centers of two adjacent electrodes spaced
by a distance G=21— 7. The regions % <z<2,+G/4 and 21— G/4
<2< 241 are metallized.

Fig. 6. Electrode pattern for one of the two frequency-chirped
transducers used in the experimental wide-band delay line.

next nonzero term, (n=2), has 8:=58y and is considered as
unlikely to produce significant coupling to waves of propaga-
tion vector 8. On the further assumption that coupling to the
Rayleigh wave comes largely from those areas of a transducer
which have 8,28, and noting that the second term in square
brackets in (40) represents, even on moderate dielectric con-
stant substrates, only a small correction to the major coupling
term, we replace (8/8,) by unity in that equation and obtain
the approximate expression

Sz, 2) i [e,, + e0:|Pn(0) cos 8,5 (41)

1.854(Zk+1 - Z]c) n=0 €
which has been used as the basis of the calculations.

IV. PrACTICAL APPLICATION

To test the validity of the transadmittance integral for-
mulation, the theory was used to predict the insertion loss
and frequency response of a wide-band surface-wave filter,
and the results were compared with an experimental measure-
ment of the same parameters. The line used had identical
frequency-chirped transducers at the input and output ports,
one of which is shown in Fig. 6, and was fabricated using
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Fig. 7. Voltage transfer ratio for a wide-band surface-wave delay line

utilizing an identical pair of unapodjzed logarithmically frequency-
chirped transducers.

aluminum electrodes on YX-quartz. The 41 electrodes were
unapodized and spaced so that the ratio of successive gap
widths was held constant at 0.9722. This resulted in a ratio
of the first gap width to the last gap width of 3.0; the syn-
chronous frequencies for the first and last gaps were 15 and
45 MHz, respectively. The gap widths were arranged to be
equal to half the sum of the two adjacent electrode widths
at all points along the transducer. The electrode lengths were
fixed at 4.7 mm, corresponding to SO\ at 33.5 MHz.

Both transducers were frequency-chirped in the same
direction to give constant delay with frequency.

Theoretical Response

The predicted voltage transfer function was determined
using a digital computer by first calculating Y (w) as a func-
tion of frequency using (39) and then substituting in (4). In
the computation, use was made of the fact that when the
transducers are not apodized, the area integrals in (39) reduce
to one-dimensional integrals which form, in fact, the familiar
Fourier transform. These integrals were then evaluated
separately using a 1024-point complex FFT algorithm.

Before this could be done, it was necessary to obtain a
spatial representation of the source function f(x, ). No at-
tempt was made to model the harmonic response of the
transducer on this occasion, and it was assumed that this
would not seriously affect the passband response of the line.
The next step involved the assumption that the source func-
tion in each gap is not greatly affected by the geometry of the
adjacent gaps, and hence the source function in each gap
would be identical to that expected in a uniform infinitely
long transducer with the same gap width. In this way, a
source function was assembled by assuming in each gap the
waveform responsible for exciting the fundamental com-
ponent corresponding to that gap (the word “gap” here refers
to the region between the electrical centers of adjacent elec-
trodes).

The calculated magnitude of the voltage transfer ratio
‘ YngL|, based on the above calculations for ¥y (w) and mea-
sured values of Z(w), is shown as the solid curve of Fig. 7.

Experimental Results

The delay line was mounted in a metal box with careful
screening between the input and output wiring to minimize
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Fig. 8. Schematic of the delay line measurement circuit.

direct capacitive coupling of input signals to the output. The
measurement system is shown in Fig. 8. All cables were 50-Q
characteristic impedance and were terminated in 50 Q at the
oscilloscope. The input impedance to the delay line was con-
firmed to be much higher than 50 2, and no attempt was made
to tune or match the transducers.

Initially, short bursts of RF signal were used to excite the
line to facilitate the identification of undesired propagating
modes reaching the output transducer. As expected with
such wide-band transducers, significant volume mode energy
was reaching the receiving transducer at the higher frequen-
cies. These modes were removed by cutting a number of slots
into, and adding black wax to, the underside of the crystal.

The measurements were then performed using very long
pulses, and the modulus of the voltage transfer ratio so ob-
tained is shown as the experimental points in Fig. 7. Tt can
be seen that the magnitudes of the theoretical and experi-
mental voltage transfer ratios, neither of which contains ad-
justable constants, are in good agreement. The greater in-
sertion loss in the experimental result can be attributed to
resistive losses, diffraction, and the effects of slight pattern
and crystal misalignment, which were not included in the
calculations. A notable feature of the passband response is an
approximate 6-dB rise between 17 and 37 MHz superimposed
on the passband ripples. These features may be understood
by observing that in the stationary phase approximation [11],
integrals Fy and F, (37), if carried out over transducers having
a logarithmic gap taper and infinite length, are independent
of frequency. The factor |w| in the forward transadmittance
expression then predicts a frequency response rising at 6 dB
per octave. The passband ripples evident in Fig. 7 arise from
the use of transducers of finite length, and in a practical
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device would be minimized by suitably tapering the electrode
overlaps at each end of the transducer.

V. CONCLUSIONS

The admittance formulation has been shown to form a
convenient basis for the calculation of many of the quantities
of interest in tapped delay lines and one-port information
stores. Existing formulations for the derivation of the input
admittances of an N-port structure have been supplemented
by a theory which provides explicit calculation procedures for
the determination of the transadmittance between two trans-
ducers on a weak-coupling substrate.

Calculations of the transadmittance for a wide-band filter
using approximate expressions for the potential and charge
distributions show good agreement with experiment. There
is some discrepancy between measured and theoretical results
at higher frequencies, which is thought to arise from the use of
the independent-gap approximation for the field and charge
distributions, and may possibly also be related to the weak-
coupling approximation.
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